On-the-Fly Computing on Many-Core Processors in Nuclear Applications

نویسنده

  • Noriyuki KUSHIDA
چکیده

Many nuclear applications still require more computational power than the current computers can provide. Furthermore, some of them require dedicated machines, because they must run constantly or no delay is allowed. To satisfy these requirements, we introduce computer accelerators which can provide higher computational power with lower prices than the current commodity processors. However, the feasibility of accelerators had not well investigated on nuclear applications. Thus, we applied the Cell and GPGPU to plasma stability monitoring and infrasound propagation analysis, respectively. In the plasma monitoring, the eigenvalue solver was focused on. To obtain sufficient power, we connected Cells with Ethernet, and implemented a preconditioned conjugate gradient method. Moreover, we applied a hierarchical parallelization method to minimize communications among the Cells. Finally, we could solve the block tri-diagonal Hermitian matrix that had 1, 024 diagonal blocks, and each block was 128 × 128, within one second. On the basis of these results, we showed the potential of plasma monitoring by using our Cell cluster system. In infrasound propagation analysis, we accelerated two-dimensional parabolic equation (PE) method by using GPGPU. PE is one of the most accurate methods, but it requires higher computational power than other methods. By applying softwarepipelining and memory layout optimization, we obtained ×18.3 speedup on GPU from CPU. Our achieved computing speed could be comparable to faster but more inaccurate method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-Low-Energy DSP Processor Design for Many-Core Parallel Applications

Background and Objectives: Digital signal processors are widely used in energy constrained applications in which battery lifetime is a critical concern. Accordingly, designing ultra-low-energy processors is a major concern. In this work and in the first step, we propose a sub-threshold DSP processor. Methods: As our baseline architecture, we use a modified version of an existing ultra-low-power...

متن کامل

Efficient parallelization of the genetic algorithm solution of traveling salesman problem on multi-core and many-core systems

Efficient parallelization of genetic algorithms (GAs) on state-of-the-art multi-threading or many-threading platforms is a challenge due to the difficulty of schedulation of hardware resources regarding the concurrency of threads. In this paper, for resolving the problem, a novel method is proposed, which parallelizes the GA by designing three concurrent kernels, each of which running some depe...

متن کامل

A Clustering Approach to Scientific Workflow Scheduling on the Cloud with Deadline and Cost Constraints

One of the main features of High Throughput Computing systems is the availability of high power processing resources. Cloud Computing systems can offer these features through concepts like Pay-Per-Use and Quality of Service (QoS) over the Internet. Many applications in Cloud computing are represented by workflows. Quality of Service is one of the most important challenges in the context of sche...

متن کامل

Computing Atomic Density Changes of Material Composition in Operation of the Nuclear Reactor Core

The present work investigates an appropriate way to calculate the 1700 atomic density changes in the reactor operations. To automate this procedure, a computer program has been designed by C#. This program suggests a way to solve this problem which is based on the solution system of differential equations (Bitman) that it is designed according to Runge-Kutta Fehlberg method. The designed softwa...

متن کامل

Green Energy-aware task scheduling using the DVFS technique in Cloud Computing

Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011